Hybrid Coronary Revascularization: Clinical Data and Future Perspectives

Spencer B. King III, MD, MACC

Professor of Medicine (Emeritus)
Emory University School of Medicine , Atlanta, GA Visiting Professor of Medicine, Nanjing Medical University, China

Founding Editor: JACC Cardiovascular Interventions

I, Spencer B. King III DO NOT have a financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation.

State of Coronary Revascularization

$2^{\text {nd }}$ gen DES and new stent platforms have made considerable improvements in PCI outcomes

However
LIMA to LAD graft
has the best long term survival advantage

Contemporary Left Main CABG vs PCI Trials

Left Main PCI vs CABG trials	CABG (total patients)	PCl arm (total patients)	LM Bifurcation (total patients)	Syntax Score	Type of DES	Follow up (years)	TLR (\%)	TVR (\%)	MACE (\%)	Conclusion
$1^{\text {st }}$ Gen. DES										
SYNTAX LM ${ }^{2}$	348	357	56	<22	PES	5	5-years: 23%		5 years: PCl vs. CABG: 32\% vs. 28.6\% ($p=0.12$)	PCI equivalent
$2^{\text {nd }}$ Gen. DES										
PRECOMBAT $2{ }^{20}$	272	334	240	<26	EES	1,5		PCI vs CABG: 6.5\% vs. 2.6 \% ($\mathrm{P}=0.02$)	PCl vs. CABG: 8.9 \% vs. 6.7 \% ($\mathrm{P}=0.26$)	PCI equivalent
EXCEL ${ }^{6}$	957	948	767 (81\%)	<32	EES	3	$\begin{array}{\|c} \text { ID-TLR } \\ \text { PCI:12.60\% } \\ \hline \text { CABG: } 7.50 \% \end{array}$		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Death, stroke, } \\ \text { or MI: } \end{array} \\ \hline 30 \text {-days: } \\ \hline \end{array}$	PCI non-inferior
									$\begin{aligned} & \text { PCI: } 4.9 \text { \% } \\ & \text { CABG: } 7.9 \text { \% } \end{aligned}$	
									3-years: PCI: 15.4 \% CABG: 14.7 \%	
NOBLE ${ }^{7}$	592	592	479 (81\%)	$\begin{gathered} \text { Median: } \\ 22.5 \end{gathered}$	Biolimus	5	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \text { PCI: 12\% } \\ \hline \text { CABG: } \end{array}$		Death	PCI inferior due to increased MI and stroke rates
									30-days	
									PCI: 0.34\% CABG: 1.2\%	
									Death, MI, CVA,	
									TLR	
									5-years	
									$\begin{gathered} \text { PCI: } 28.9 \% \\ \text { CABG: } 19.1 \% \\ \hline \end{gathered}$	

Tanveer Rab et al. JCIN 2017;10:849-865 While TLR rates have decreased side branch stenosis is still a problem and long term outcomes are unknown.

Revascularization in left main coronary artery disease: comparison of off-pump coronary artery bypass grafting vs percutaneous coronary intervention ${ }^{\dagger}$

Patients with LMCA disease were treated with OPCAB $(n=553)$ or $\operatorname{PCI}(n=346)$. We compared major adverse cardiac and cerebrovascular events (MACCE) including death, stroke, acute MI and TVR.

The median follow-up was 55.9 months.
Table 3: Bifurcation lesions of left main coronary artery

Variables	PCl group	OPCAB group	P value
Bifurcation lesions	173/346 (50.0\%)	132/284 (46.5\%)	0.244
MEDINA classification			
1.0.0	16 (9.2\%)	6 (4.5\%)	0.119
0.1.0	5 (2.9\%)	5 (3.8\%)	0.656
1.1.0	53 (30.5\%)	31 (23.5\%)	0.176
1.1.1	78 (44.8\%)	79 (59.8\%)	0.009
0.0.1	5 (2.9\%)	2 (1.5\%)	0.479
1.0.1	14 (8.0\%)	5 (3.8\%)	0.126
0.1.1	3 (1.7\%)	4 (3.0\%)	0.703

Revascularization in left main coronary artery disease: comparison of off-pump coronary artery bypass grafting vs percutaneous coronary intervention ${ }^{\dagger}$

Patients with LMCA disease were treated with OPCAB $(\mathrm{n}=553)$ or $\mathrm{PCI}(\mathrm{n}=346)$. We compared major adverse cardiac and cerebrovascular events (MACCE) including death, stroke, acute MI and TVR.

The median follow-up was 55.9 months.

Case Presentation:

LM Bifurcation and Proximal LAD Disease
57 yo male with NSTEMI, no past medical history, strong family history, refused sternotomy

Case Presentation:

LM Bifurcation and Proximal LAD Disease
57 yo male with NSTEMI, no past medical history, strong family history, refused sternotomy

Treatment Strategy:

Robotic assisted LIMA-LAD

Subsequent PCI of LM into LCx on POD \#1

Hybrid Coronary Revascularization

Planned combination of surgical and percutaneous techniques in two different coronary territories, both scheduled and performed within a predefined time period in a patient with multivessel CAD

Treatment Strategy: Robotic assisted LIMA-LAD Subsequent PCI of LM into LCx on POD \#1

Treatment Strategy: Robotic assisted LIMA-LAD Subsequent PCI of LM into LCx on POD \#1

Postoperative Course Taken to cath lab on POD\#1 Uncomplicated procedure Discharged home POD\#3 Back to work 2 weeks

Hybrid Coronary Revascularization for the Treatment of Left Main Coronary Stenosis: A Feasibility Study

22 consecutive patients with LM stenosis $>70 \%$ underwent staged HCR. Following a robotic or thoracoscopic-assisted minimally invasive LIMA to LAD CABG, PCI of the LM, and non-LAD targets was performed after angiographic confirmation of LIMA patency. IVUS confirmed optimal stent deployment.

30 day adverse outcomes and long term follow up was obtained

Procedural Characteristics	
Procedural characteristics	N
Surgery related	
LIMA patency pre PCI	$22 / 22(100 \%)$ —Fitzgibbon A
PCI related	
DES	$21 / 22$
BMS	$1 / 22(5 \mathrm{~mm}$ BMS
	for large caliber LM $)$
IVUS guidance	$22 / 22(100 \%)$

Outcomes

Outcome measures	
Mean ICU stay	1.1 ± 0.4 days (1-3)
Re exploration with transfusion	$2 / 22$
of blood products	$15 / 22$
Hybrid surgery/PCI same hospitalization	3.8 ± 1.4 days (2-6)
\quad Staged interval	6.1 ± 2.4 days (3-10)
Hospitalization	0
MACCE	0
\quad In hospital	1^{a}
30 days	38.8 ± 22.6 months
Death	
Duration of follow up (mean $\pm \mathrm{SD})$	

Hybrid Coronary Revascularization for the Treatment of Left Main Coronary Stenosis: A Feasibility Study

Conclusion:

Hybrid revascularization for LM coronary artery stenosis appears to be a safe and feasible procedure in selected patients and may preserve the survival advantage imparted by the left internal mammary artery graft to the LAD

DES	$21 / 22$
BMS	$1 / 22(5 \mathrm{~mm}$ BMS
	for large caliber LM $)$
IVUS guidance	$22 / 22(100 \%)$

Hospitalization
MACCE
In hospital
6.1 ± 2.4 days (3-10)

30 days
Death
Duration of follow up (mean \pm SD)

Hybrid Coronary Revascularization Versus OffPump Coronary Artery Bypass for the Treatment of Left Main Coronary Stenosis

27 patients with LM coronary disease had HCR and were matched $3: 1$ to 81 contemporaneous patients treated with off-pump CABG through a sternotomy. In-hospital major adverse cardiac and cerebrovascular events and repeat revascularization during the study period were compared between groups.

Hybrid Coronary Revascularization Versus OffPump Coronary Artery Bypass for the Treatment of Left Main Coronary Stenosis

27 patients with LM coronary disease had HCR and were matched $3: 1$ to 81 contemporaneous patients treated with off-pump CABG through a sternotomy. In-hospital major adverse cardiac and cerebrovascular events and repeat revascularization during the study period were compared between groups.

Conclusion:

Hybrid revascularization is a safe, feasible, and minimally invasive alternative to off-pump coronary artery bypass grafting for the treatment of LM. Further investigation into the comparative effectiveness of this alternative strategy is warranted to identify optimal candidates for HCR.

Hybrid Revascularization for Multivessel Coronary Artery Disease

(3) JACC

200 patients with MVCAD involving the LAD and a critical ($>70 \%$) lesion in at least 1 major epicardial vessel (except the LAD) were randomly assigned to undergo HCR or CABG (in a $1: 1$ ratio)
The primary endpoint was the evaluation of the safety of HCR. The feasibility was defined by the $\%$ of patients with a complete HCR procedure and the \% of patients with conversions to standard CABG. The occurrence of MACE such as death, MI , stroke, repeated revasc, and major bleeding within the 12 -month period after randomization was also assessed.

Hybrid Revascularization for

Multivessel Coronary Artery Disease

200 patients with MVCAD involving the LAD and a critical ($>70 \%$) lesion in at least 1 major epicardial vessel
(except the LAD) were randomly assigned to undergo HCR or CABG (in a 1:1 ratio)

Conclusion:

HCR is feasible in selected patients with MVCAD referred for conventional CABG

Hybrid Coronary Revascularization Versus Coronary Artery Bypass Grafting in Patients With Multivessel Coronary Artery Disease: A Meta-Analysis
 SCAI

Studies comparing HCR with CABG for treatment of MVCAD were selected. Summary odds ratios (ORs) and 95\% Cls with the random-effects model were calculated. The primary outcome of interest was the occurrence of major adverse cardiac and cerebrovascular events (MACCE), defined as a composite of all cause mortality, myocardial infarction, and stroke.

Hybrid Coronary Revascularization Versus Coronary Artery Bypass Grafting in Patients With Multivessel Coronary Artery Disease: A Meta-Analysis

 Reni on

Conclusion:

HCR appears to be safe, and has similar outcomes when compared with conventional CABG. HCR can be a suitable alternative to conventional CABG in select patients with MVCAD

C: Repeat revascularization with HCR versus CABG										
Study or Subgroup		Total			Weight	Odds Ratio M.H. Random, $95 \% \mathrm{Cl}$			Ratio om, $95 \% \mathrm{Cl}$	
Bachinsky 2012	0	25	0	27		Not estimable				
Delhaye 2010	1	18	0	18	5.5\%	3.17 [0.12, 83.17]				
Harskamp 2015	13	306	53	918	59.0\%	$0.72[0.39,1.35]$		-		
HYBRID 2014	2	98	0	102	6.3\%	$5.31[0.25,112.04]$				
Kon 2008	1	15	0	30	5.5\%	6.31 [0.24, 164.56]				
Shen 2013	6	141	3	141	23.6\%	2.04 [0.50, 8.34]				
Total (95\% Cl)		603		1236	100.0\%	1.28 [0.58, 2.83]				
Total events $\quad{ }^{23} \quad 56$Heterogeneity: $\mathrm{TaU}^{2}=0.18 ; \mathrm{Chi}^{2}=4.90, \mathrm{df}=4(\mathrm{P}=0.30) ; \mathrm{R}^{2}=18 \%$										
Heterogeneity Tau 2 Test for overall effect	0.18; Chi	$\begin{aligned} & \mathrm{z}=4.90 \\ & \mathrm{P}=0.5 \end{aligned}$	$0, d f=4$ 4)	P $=0.3$	0): ${ }^{2}=18$		0.01			100

```
Hybrid Coronary Revascularization

200 HCR and 98 multivessel PCI patients were enrolled at 11 sites. The primary outcome was major adverse cardiac and cerebrovascular events (MACCE) (death, stroke, MI, repeat revasc) within 12 months postintervention. Cox proportional hazards models were used to model time to First MACCE event


\section*{Therefore:}

HCR is a safe and feasible procedure and utilizes the " BEST OF BOTH WORLDS STRATEGY"

HCR is non inferior to OPCAB with low TVR rates while OPCAB (with a sternotomy) is superior to PCI

Numbers are small in observational studies and small trials

Requires dedicated cardiac surgeon, facile with the Da Vinci Robot or endoscopic technique Increased procedural costs are offset by decreased length of stay, ICU care, need for blood products and convalescence

Compared to OPCAB, HCR increases hospital contribution margins

\section*{Hybrid Coronary Revascularization}


Hybrid coronary revascularization (defined as the planned combination of left internal mammary artery-to-LAD artery grafting and PCI of \(\geq 1\) non-LAD coronary arteries) is reasonable in patients with 1 or more of the following:
a. Limitations to traditional CABG, such as a heavily calcified proximal aorta or poor target vessels for CABG (but amenable to PCI);
b. Lack of suitable graft conduits;
c. Unfavorable LAD artery for PCI (i.e., excessive vessel tortuosity or chronic total occlusion).


Hybrid coronary revascularization (defined as the planned combination of LIMA-to-LAD artery grafting and PCI of \(\geq 1\) non-LAD coronary arteries) may be reasonable as an alternative to multivessel PCI or CABG in an attempt to improve the overall risk-benefit ratio of the procedures.

\title{
Hybrid Coronary Revascularization As An Alternative to Multivessel PCI: The Hybrid Trial
}

\author{
John D. Puskas, MD, MSc, FACS, FACC
}

Professor and Chairman
Department of Cardiovascular Surgery, Mount Sinai Saint Luke's
Director, Surgical Coronary Revascularization, Mount Sinai Health System

EACTS 2018
Milano, Italy
October 19, 2018

\section*{Randomized Trial of HCR vs. PCI}

2,354 pts at up to 70 sites with MVD involving the LAD distribution eligible for both HCR and PCl with DES

HCR with LIMA to LAD + PCI with DES to non-LAD vessels

> Multivessel PCI with DES of all vessels, including the LAD

Follow-up: 30 days, 6 months, and then every 6 months through 5 years Primary endpoint
5-year MACCE (death, MI, stroke, or repeat revascularization)
Powered to detect superiority of HCR over PCI
Principal Investigators: John D. Puskas and Gregg W. Stone
Clinical and Data Coordinating Center: InCHOIR, Mt Sinai, NY, NY

\section*{Randomized Trial of HCR vs. PCI}

2,354 pts at up to 70 sites with MVD involving the LAD distribution eligible for both HCR and PCl with DES


150 Randomized

325Eligible
1622 Screened

TARGET 2354

\section*{Conclusions}

For certain patients with LM disease the long term might favor hybrid revascularization with LIMA to the LAD and DES to the Left Main and Circumflex

Unfortunately the trial to answer that question has been stopped but perhaps someone will take it up again

Meanwhile hybrid revascularization will remain an attractive option for some centers willing to commit to it```

